How Can Experimenters Help Improve Accelerator Operations?

Jean Slaughter
UEC Meeting
November 22, 2003

Outline

- What experimenters have been doing
 - > A number of examples in BD
 - > CDF and DO as Tevatron diagnostics
- Some examples of new projects
- Intangibles
 - > Why should experimenters help?
 - > What it takes for a successful collaboration
- Summary

Some Past and Present Examples I

- Tev alignment roll measurements
 - > Roll fixture Hans Jostlein, 2 teams of post-docs took measurements in current shutdown
- MI damper boards Bill Ashmanskas, Eric James
- Existing Tevatron BPMs Fritz Dejongh
 - Worked with technician to tune up performance and get correct electrical and survey offsets
 - > Now getting useful data with coalesced beam
 - Conventional wisdom said system was useless for coalesced beam
- MARS code to simulate production, focusing, transport of Pbars - Peter Bussey
- Recycler flying wires Peter Wilson
- MiniBoone and NUMI people and money

MiniBoone and the Booster

Projects

- > Loss studies
- > Resonant extraction of halo
- > Ramp monitoring code
- > MARS and neutron transport code code
- > TLM construction
- > Booster Studies
- > Dipole correction electronics and code

Times

- > Minimum 1 month
- > Maximum 50% for 3 years
- Undergrads, grad students, post docs, professors
 - > Columbia, Cincinnati, LANL, New Mexico, LSU, Michigan

MINOS collaborators involved in Proton Source activities

From Alberto Marchionni

Caltech

- Doug Michael, member of the Proton Committee chaired by D.
 Finley
- Rich Smith (post doc) large aperture Booster RF cavities
- Hai Zheng (post doc) Main Injector RF barrier cavity, fast stacking schemes
- University of South Carolina
 - S. Mishra (Main Injector Department, on leave of absence from USC), Andrew Godley (postdoc), Karen Wu (graduate student)
 Main Injector/NuMI Beam Permit
- Stanford University
 - Hyejoo Kang (post doc) Main Injector dampers
- University of Texas-Austin
 - Bob Zwaska (graduate student) Booster notch cogging

Some Past and Present Examples - II

- SDA system for acquiring, archiving, analyzing data from stores
 - Allows correlation of information from multiple sources at specific times during the stores
 - > Day to day monitoring of stores, long term trends
 - > Specialized studies
 - Investigate correlations like luminosity vs. emittances, number of protons and anti-protons
 - Accelerator physics questions like pbar burn rate / total loss rate during HEP
- Analysis work so far has been done mostly by non-BD people
 - > CD people led by Paul Lebrun
 - > Students from BU, Texas Tech
 - > JC Yun (CDF), Juan Estrada(DO)

Some Past and Present Examples - III

- Tev and MI emittance instrumentation
 - Woefully neglected
 - > Early volunteers on hardware
 - flying wires Stephen Pordes
 - Sync light Harry Cheung
 - · Sampled bunch display Alvin Tollestrup
 - Offline (SDA) analysis cross calibration of instruments
 - Example compare emittance as measured by FWs with that measured by sync light, look for saturation effects
 - Started by students from BU and Texas Tech
 - · Continued with people from Computing Division
 - > Detected hardware problems and underlined problems with understanding Tev lattice

DO and CDF as Tevatron Diagnostics

- Luminosity measurements
 - > Bottom line of Tevatron performance
 - > Cross check with accelerator measurements
 - > Systematic difference CDF/DO soon resolved....
- Position and angle of beam from silicon vertex detectors
- Measurements of size of luminous region as a function of z,
 - > Beta*, Emittances, Z of interaction point
 - > Tev people would like this online every 15 minutes
 - Offline work "proceeds"

Some ideas for Collaboration I

Instrumentation

- Correlate beam positions at DO and CDF as measured by collision point monitors with that reported by silicon vertex detectors needs hardware investigation
- >Photodiode to use sync light for tune measurements
- >Uniform longitudinal emittance system
 - · 4 GHz scope readout and analysis of data
- >Sync light

Some ideas for Collaboration - II

- SDA shot data analysis open ended
 - Write Java programs that can access both shot data and data logger data
 - Example correlate beam position monitor data and beam loss monitor data with losses
- Many others success comes from matching experimenter skills and interests with appropriate projects and BD contacts

Benefits of Help from Experimenters

- Contributes to improving integrated luminosity and more protons - Valuable skills
 - > Detectors
 - > Electronics
 - > Programming
 - > Analysis techniques
 - > Not involved in day to day operations
 - > Fresh perspective
- Better communications between BD and experiments
- Learn something new
 - > From the project
 - > Accelerator physics discussion group

But - they need recognition

- Experiments need people for own work
- Fermilab scientists can get internal recognition.
- How can university experimenters get "credit"
 - > Counts for service work on DO/CDF
 - > DOE and NSF?
 - > Published papers (from University of xyz)

Requirements for Successful Projects

- Open minded approach from experimenters and BD people
 - > "transplants" have a special role here
- Cultural differences
 - > Operations vs. scientific inquiry
 - > Have to fit into existing systems
- Learning curve need sufficient commitment and initiative. Output appropriate for investment.
- Requires persistence- BD people are "interrupt driven" and expertise tends to be concentrated in a few people

Summary

- Many examples of successful experimenter contributions to BD
- Some cases which didn't work out
- The need exists
- Contact
 - > Jean Slaughter (slaughter@fnal.gov, 630-840-3993)
 - > Stephen Pordes (stephen@fnal.gov, 630-840-3603)

"Complex campaign of operations, maintenance, upgrades, R&D and studies"